On Restricted Arithmetic Progressions over Finite Fields

نویسنده

  • BRIAN COOK
چکیده

Let A be a subset of Fp , the n-dimensional linear space over the prime field Fp of size at least δN (N = p), and let Sv = P −1(v) be the level set of a homogeneous polynomial map P : Fp → Fp of degree d, for v ∈ Fp . We show, that under appropriate conditions, the set A contains at least cN |S| arithmetic progressions of length l ≤ d with common difference in Sv, where c is a positive constant depending on δ, l and P . We also show that the conditions are generic for a class of sparse algebraic sets of density ≈ N−γ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic and Geometric Progressions in Productsets over Finite Fields

Given two sets A,B ⊆ IFq of elements of the finite field IFq of q elements, we show that the productset AB = {ab | a ∈ A, b ∈ B} contains an arithmetic progression of length k ≥ 3 provided that k < p, where p is the characteristic of IFq, and #A#B ≥ 3q 2d−2/k. We also consider geometric progressions in a shifted productset AB + h, for f ∈ IFq, and obtain a similar result.

متن کامل

Green-tao Theorem in Function Fields

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite field, to show that for every k, the irreducible polynomials in Fq[t] contain configurations of the form {f + P g : deg(P) < k}, g = 0.

متن کامل

Five Squares in Arithmetic Progression over Quadratic Fields

We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...

متن کامل

Green-tao Theorem in Function Fields

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite fields, to show that for every k, the irreducible polynomials in Fq[t] contains configurations of the form {f + P g : deg(P) < k}, g = 0.

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012